3.7.31 \(\int \frac {a+b \arcsin (c x)}{x^3 (d+e x^2)} \, dx\) [631]

3.7.31.1 Optimal result
3.7.31.2 Mathematica [A] (verified)
3.7.31.3 Rubi [A] (verified)
3.7.31.4 Maple [C] (warning: unable to verify)
3.7.31.5 Fricas [F]
3.7.31.6 Sympy [F]
3.7.31.7 Maxima [F]
3.7.31.8 Giac [F(-1)]
3.7.31.9 Mupad [F(-1)]

3.7.31.1 Optimal result

Integrand size = 21, antiderivative size = 573 \[ \int \frac {a+b \arcsin (c x)}{x^3 \left (d+e x^2\right )} \, dx=-\frac {b c \sqrt {1-c^2 x^2}}{2 d x}-\frac {a+b \arcsin (c x)}{2 d x^2}+\frac {e (a+b \arcsin (c x)) \log \left (1-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{2 d^2}+\frac {e (a+b \arcsin (c x)) \log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{2 d^2}+\frac {e (a+b \arcsin (c x)) \log \left (1-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 d^2}+\frac {e (a+b \arcsin (c x)) \log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 d^2}-\frac {e (a+b \arcsin (c x)) \log \left (1-e^{2 i \arcsin (c x)}\right )}{d^2}-\frac {i b e \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{2 d^2}-\frac {i b e \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {c^2 d+e}}\right )}{2 d^2}-\frac {i b e \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 d^2}-\frac {i b e \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}+\sqrt {c^2 d+e}}\right )}{2 d^2}+\frac {i b e \operatorname {PolyLog}\left (2,e^{2 i \arcsin (c x)}\right )}{2 d^2} \]

output
1/2*(-a-b*arcsin(c*x))/d/x^2-e*(a+b*arcsin(c*x))*ln(1-(I*c*x+(-c^2*x^2+1)^ 
(1/2))^2)/d^2+1/2*e*(a+b*arcsin(c*x))*ln(1-(I*c*x+(-c^2*x^2+1)^(1/2))*e^(1 
/2)/(I*c*(-d)^(1/2)-(c^2*d+e)^(1/2)))/d^2+1/2*e*(a+b*arcsin(c*x))*ln(1+(I* 
c*x+(-c^2*x^2+1)^(1/2))*e^(1/2)/(I*c*(-d)^(1/2)-(c^2*d+e)^(1/2)))/d^2+1/2* 
e*(a+b*arcsin(c*x))*ln(1-(I*c*x+(-c^2*x^2+1)^(1/2))*e^(1/2)/(I*c*(-d)^(1/2 
)+(c^2*d+e)^(1/2)))/d^2+1/2*e*(a+b*arcsin(c*x))*ln(1+(I*c*x+(-c^2*x^2+1)^( 
1/2))*e^(1/2)/(I*c*(-d)^(1/2)+(c^2*d+e)^(1/2)))/d^2+1/2*I*b*e*polylog(2,(I 
*c*x+(-c^2*x^2+1)^(1/2))^2)/d^2-1/2*I*b*e*polylog(2,-(I*c*x+(-c^2*x^2+1)^( 
1/2))*e^(1/2)/(I*c*(-d)^(1/2)-(c^2*d+e)^(1/2)))/d^2-1/2*I*b*e*polylog(2,(I 
*c*x+(-c^2*x^2+1)^(1/2))*e^(1/2)/(I*c*(-d)^(1/2)-(c^2*d+e)^(1/2)))/d^2-1/2 
*I*b*e*polylog(2,-(I*c*x+(-c^2*x^2+1)^(1/2))*e^(1/2)/(I*c*(-d)^(1/2)+(c^2* 
d+e)^(1/2)))/d^2-1/2*I*b*e*polylog(2,(I*c*x+(-c^2*x^2+1)^(1/2))*e^(1/2)/(I 
*c*(-d)^(1/2)+(c^2*d+e)^(1/2)))/d^2-1/2*b*c*(-c^2*x^2+1)^(1/2)/d/x
 
3.7.31.2 Mathematica [A] (verified)

Time = 0.20 (sec) , antiderivative size = 509, normalized size of antiderivative = 0.89 \[ \int \frac {a+b \arcsin (c x)}{x^3 \left (d+e x^2\right )} \, dx=-\frac {a}{2 d x^2}-\frac {a e \log (x)}{d^2}+\frac {a e \log \left (d+e x^2\right )}{2 d^2}+b \left (-\frac {c x \sqrt {1-c^2 x^2}+\arcsin (c x)}{2 d x^2}-\frac {i e \left (\arcsin (c x) \left (\arcsin (c x)+2 i \left (\log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{c \sqrt {d}-\sqrt {c^2 d+e}}\right )+\log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{c \sqrt {d}+\sqrt {c^2 d+e}}\right )\right )\right )+2 \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{-c \sqrt {d}+\sqrt {c^2 d+e}}\right )+2 \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \arcsin (c x)}}{c \sqrt {d}+\sqrt {c^2 d+e}}\right )\right )}{4 d^2}-\frac {i e \left (\arcsin (c x) \left (\arcsin (c x)+2 i \left (\log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{-c \sqrt {d}+\sqrt {c^2 d+e}}\right )+\log \left (1-\frac {\sqrt {e} e^{i \arcsin (c x)}}{c \sqrt {d}+\sqrt {c^2 d+e}}\right )\right )\right )+2 \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{c \sqrt {d}-\sqrt {c^2 d+e}}\right )+2 \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{c \sqrt {d}+\sqrt {c^2 d+e}}\right )\right )}{4 d^2}-\frac {e \left (\arcsin (c x) \log \left (1-e^{2 i \arcsin (c x)}\right )-\frac {1}{2} i \left (\arcsin (c x)^2+\operatorname {PolyLog}\left (2,e^{2 i \arcsin (c x)}\right )\right )\right )}{d^2}\right ) \]

input
Integrate[(a + b*ArcSin[c*x])/(x^3*(d + e*x^2)),x]
 
output
-1/2*a/(d*x^2) - (a*e*Log[x])/d^2 + (a*e*Log[d + e*x^2])/(2*d^2) + b*(-1/2 
*(c*x*Sqrt[1 - c^2*x^2] + ArcSin[c*x])/(d*x^2) - ((I/4)*e*(ArcSin[c*x]*(Ar 
cSin[c*x] + (2*I)*(Log[1 + (Sqrt[e]*E^(I*ArcSin[c*x]))/(c*Sqrt[d] - Sqrt[c 
^2*d + e])] + Log[1 + (Sqrt[e]*E^(I*ArcSin[c*x]))/(c*Sqrt[d] + Sqrt[c^2*d 
+ e])])) + 2*PolyLog[2, (Sqrt[e]*E^(I*ArcSin[c*x]))/(-(c*Sqrt[d]) + Sqrt[c 
^2*d + e])] + 2*PolyLog[2, -((Sqrt[e]*E^(I*ArcSin[c*x]))/(c*Sqrt[d] + Sqrt 
[c^2*d + e]))]))/d^2 - ((I/4)*e*(ArcSin[c*x]*(ArcSin[c*x] + (2*I)*(Log[1 + 
 (Sqrt[e]*E^(I*ArcSin[c*x]))/(-(c*Sqrt[d]) + Sqrt[c^2*d + e])] + Log[1 - ( 
Sqrt[e]*E^(I*ArcSin[c*x]))/(c*Sqrt[d] + Sqrt[c^2*d + e])])) + 2*PolyLog[2, 
 (Sqrt[e]*E^(I*ArcSin[c*x]))/(c*Sqrt[d] - Sqrt[c^2*d + e])] + 2*PolyLog[2, 
 (Sqrt[e]*E^(I*ArcSin[c*x]))/(c*Sqrt[d] + Sqrt[c^2*d + e])]))/d^2 - (e*(Ar 
cSin[c*x]*Log[1 - E^((2*I)*ArcSin[c*x])] - (I/2)*(ArcSin[c*x]^2 + PolyLog[ 
2, E^((2*I)*ArcSin[c*x])])))/d^2)
 
3.7.31.3 Rubi [A] (verified)

Time = 1.33 (sec) , antiderivative size = 573, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {5232, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \arcsin (c x)}{x^3 \left (d+e x^2\right )} \, dx\)

\(\Big \downarrow \) 5232

\(\displaystyle \int \left (\frac {e^2 x (a+b \arcsin (c x))}{d^2 \left (d+e x^2\right )}-\frac {e (a+b \arcsin (c x))}{d^2 x}+\frac {a+b \arcsin (c x)}{d x^3}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {e (a+b \arcsin (c x)) \log \left (1-\frac {\sqrt {e} e^{i \arcsin (c x)}}{-\sqrt {c^2 d+e}+i c \sqrt {-d}}\right )}{2 d^2}+\frac {e (a+b \arcsin (c x)) \log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{-\sqrt {c^2 d+e}+i c \sqrt {-d}}\right )}{2 d^2}+\frac {e (a+b \arcsin (c x)) \log \left (1-\frac {\sqrt {e} e^{i \arcsin (c x)}}{\sqrt {c^2 d+e}+i c \sqrt {-d}}\right )}{2 d^2}+\frac {e (a+b \arcsin (c x)) \log \left (1+\frac {\sqrt {e} e^{i \arcsin (c x)}}{\sqrt {c^2 d+e}+i c \sqrt {-d}}\right )}{2 d^2}-\frac {e \log \left (1-e^{2 i \arcsin (c x)}\right ) (a+b \arcsin (c x))}{d^2}-\frac {a+b \arcsin (c x)}{2 d x^2}-\frac {i b e \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {d c^2+e}}\right )}{2 d^2}-\frac {i b e \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{i c \sqrt {-d}-\sqrt {d c^2+e}}\right )}{2 d^2}-\frac {i b e \operatorname {PolyLog}\left (2,-\frac {\sqrt {e} e^{i \arcsin (c x)}}{i \sqrt {-d} c+\sqrt {d c^2+e}}\right )}{2 d^2}-\frac {i b e \operatorname {PolyLog}\left (2,\frac {\sqrt {e} e^{i \arcsin (c x)}}{i \sqrt {-d} c+\sqrt {d c^2+e}}\right )}{2 d^2}+\frac {i b e \operatorname {PolyLog}\left (2,e^{2 i \arcsin (c x)}\right )}{2 d^2}-\frac {b c \sqrt {1-c^2 x^2}}{2 d x}\)

input
Int[(a + b*ArcSin[c*x])/(x^3*(d + e*x^2)),x]
 
output
-1/2*(b*c*Sqrt[1 - c^2*x^2])/(d*x) - (a + b*ArcSin[c*x])/(2*d*x^2) + (e*(a 
 + b*ArcSin[c*x])*Log[1 - (Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] - Sqrt 
[c^2*d + e])])/(2*d^2) + (e*(a + b*ArcSin[c*x])*Log[1 + (Sqrt[e]*E^(I*ArcS 
in[c*x]))/(I*c*Sqrt[-d] - Sqrt[c^2*d + e])])/(2*d^2) + (e*(a + b*ArcSin[c* 
x])*Log[1 - (Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] + Sqrt[c^2*d + e])]) 
/(2*d^2) + (e*(a + b*ArcSin[c*x])*Log[1 + (Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c 
*Sqrt[-d] + Sqrt[c^2*d + e])])/(2*d^2) - (e*(a + b*ArcSin[c*x])*Log[1 - E^ 
((2*I)*ArcSin[c*x])])/d^2 - ((I/2)*b*e*PolyLog[2, -((Sqrt[e]*E^(I*ArcSin[c 
*x]))/(I*c*Sqrt[-d] - Sqrt[c^2*d + e]))])/d^2 - ((I/2)*b*e*PolyLog[2, (Sqr 
t[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] - Sqrt[c^2*d + e])])/d^2 - ((I/2)*b* 
e*PolyLog[2, -((Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] + Sqrt[c^2*d + e] 
))])/d^2 - ((I/2)*b*e*PolyLog[2, (Sqrt[e]*E^(I*ArcSin[c*x]))/(I*c*Sqrt[-d] 
 + Sqrt[c^2*d + e])])/d^2 + ((I/2)*b*e*PolyLog[2, E^((2*I)*ArcSin[c*x])])/ 
d^2
 

3.7.31.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5232
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_ 
.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*ArcSin[c*x])^n, ( 
f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[c^2*d + 
 e, 0] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]
 
3.7.31.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 1.84 (sec) , antiderivative size = 421, normalized size of antiderivative = 0.73

method result size
parts \(a \left (-\frac {1}{2 d \,x^{2}}-\frac {e \ln \left (x \right )}{d^{2}}+\frac {e \ln \left (e \,x^{2}+d \right )}{2 d^{2}}\right )+b \,c^{2} \left (-\frac {-i c^{2} x^{2}+c x \sqrt {-c^{2} x^{2}+1}+\arcsin \left (c x \right )}{2 c^{2} x^{2} d}-\frac {i e \operatorname {dilog}\left (i c x +\sqrt {-c^{2} x^{2}+1}\right )}{d^{2} c^{2}}-\frac {i e \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\left (\textit {\_R1}^{2} e -4 c^{2} d -e \right ) \left (i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} e -2 c^{2} d -e}\right )}{4 d^{2} c^{2}}-\frac {e \arcsin \left (c x \right ) \ln \left (1+i c x +\sqrt {-c^{2} x^{2}+1}\right )}{d^{2} c^{2}}+\frac {i e \operatorname {dilog}\left (1+i c x +\sqrt {-c^{2} x^{2}+1}\right )}{d^{2} c^{2}}-\frac {i e^{2} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\left (\textit {\_R1}^{2}-1\right ) \left (i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} e -2 c^{2} d -e}\right )}{4 d^{2} c^{2}}\right )\) \(421\)
derivativedivides \(c^{2} \left (-\frac {a}{2 d \,c^{2} x^{2}}-\frac {a e \ln \left (c x \right )}{c^{2} d^{2}}+\frac {a e \ln \left (c^{2} e \,x^{2}+c^{2} d \right )}{2 c^{2} d^{2}}+b \,c^{2} \left (-\frac {-i c^{2} x^{2}+c x \sqrt {-c^{2} x^{2}+1}+\arcsin \left (c x \right )}{2 c^{4} x^{2} d}-\frac {i e \operatorname {dilog}\left (i c x +\sqrt {-c^{2} x^{2}+1}\right )}{d^{2} c^{4}}-\frac {i e \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\left (-\textit {\_R1}^{2} e +4 c^{2} d +e \right ) \left (i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )\right )}{-\textit {\_R1}^{2} e +2 c^{2} d +e}\right )}{4 d^{2} c^{4}}-\frac {e \arcsin \left (c x \right ) \ln \left (1+i c x +\sqrt {-c^{2} x^{2}+1}\right )}{d^{2} c^{4}}+\frac {i e \operatorname {dilog}\left (1+i c x +\sqrt {-c^{2} x^{2}+1}\right )}{d^{2} c^{4}}+\frac {i e^{2} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\left (\textit {\_R1}^{2}-1\right ) \left (i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )\right )}{-\textit {\_R1}^{2} e +2 c^{2} d +e}\right )}{4 d^{2} c^{4}}\right )\right )\) \(440\)
default \(c^{2} \left (-\frac {a}{2 d \,c^{2} x^{2}}-\frac {a e \ln \left (c x \right )}{c^{2} d^{2}}+\frac {a e \ln \left (c^{2} e \,x^{2}+c^{2} d \right )}{2 c^{2} d^{2}}+b \,c^{2} \left (-\frac {-i c^{2} x^{2}+c x \sqrt {-c^{2} x^{2}+1}+\arcsin \left (c x \right )}{2 c^{4} x^{2} d}-\frac {i e \operatorname {dilog}\left (i c x +\sqrt {-c^{2} x^{2}+1}\right )}{d^{2} c^{4}}-\frac {i e \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\left (-\textit {\_R1}^{2} e +4 c^{2} d +e \right ) \left (i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )\right )}{-\textit {\_R1}^{2} e +2 c^{2} d +e}\right )}{4 d^{2} c^{4}}-\frac {e \arcsin \left (c x \right ) \ln \left (1+i c x +\sqrt {-c^{2} x^{2}+1}\right )}{d^{2} c^{4}}+\frac {i e \operatorname {dilog}\left (1+i c x +\sqrt {-c^{2} x^{2}+1}\right )}{d^{2} c^{4}}+\frac {i e^{2} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (e \,\textit {\_Z}^{4}+\left (-4 c^{2} d -2 e \right ) \textit {\_Z}^{2}+e \right )}{\sum }\frac {\left (\textit {\_R1}^{2}-1\right ) \left (i \arcsin \left (c x \right ) \ln \left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -i c x -\sqrt {-c^{2} x^{2}+1}}{\textit {\_R1}}\right )\right )}{-\textit {\_R1}^{2} e +2 c^{2} d +e}\right )}{4 d^{2} c^{4}}\right )\right )\) \(440\)

input
int((a+b*arcsin(c*x))/x^3/(e*x^2+d),x,method=_RETURNVERBOSE)
 
output
a*(-1/2/d/x^2-e/d^2*ln(x)+1/2*e/d^2*ln(e*x^2+d))+b*c^2*(-1/2*(-I*c^2*x^2+c 
*x*(-c^2*x^2+1)^(1/2)+arcsin(c*x))/c^2/x^2/d-I*e/d^2/c^2*dilog(I*c*x+(-c^2 
*x^2+1)^(1/2))-1/4*I*e/d^2/c^2*sum((_R1^2*e-4*c^2*d-e)/(_R1^2*e-2*c^2*d-e) 
*(I*arcsin(c*x)*ln((_R1-I*c*x-(-c^2*x^2+1)^(1/2))/_R1)+dilog((_R1-I*c*x-(- 
c^2*x^2+1)^(1/2))/_R1)),_R1=RootOf(e*_Z^4+(-4*c^2*d-2*e)*_Z^2+e))-e/d^2/c^ 
2*arcsin(c*x)*ln(1+I*c*x+(-c^2*x^2+1)^(1/2))+I*e/d^2/c^2*dilog(1+I*c*x+(-c 
^2*x^2+1)^(1/2))-1/4*I*e^2/d^2/c^2*sum((_R1^2-1)/(_R1^2*e-2*c^2*d-e)*(I*ar 
csin(c*x)*ln((_R1-I*c*x-(-c^2*x^2+1)^(1/2))/_R1)+dilog((_R1-I*c*x-(-c^2*x^ 
2+1)^(1/2))/_R1)),_R1=RootOf(e*_Z^4+(-4*c^2*d-2*e)*_Z^2+e)))
 
3.7.31.5 Fricas [F]

\[ \int \frac {a+b \arcsin (c x)}{x^3 \left (d+e x^2\right )} \, dx=\int { \frac {b \arcsin \left (c x\right ) + a}{{\left (e x^{2} + d\right )} x^{3}} \,d x } \]

input
integrate((a+b*arcsin(c*x))/x^3/(e*x^2+d),x, algorithm="fricas")
 
output
integral((b*arcsin(c*x) + a)/(e*x^5 + d*x^3), x)
 
3.7.31.6 Sympy [F]

\[ \int \frac {a+b \arcsin (c x)}{x^3 \left (d+e x^2\right )} \, dx=\int \frac {a + b \operatorname {asin}{\left (c x \right )}}{x^{3} \left (d + e x^{2}\right )}\, dx \]

input
integrate((a+b*asin(c*x))/x**3/(e*x**2+d),x)
 
output
Integral((a + b*asin(c*x))/(x**3*(d + e*x**2)), x)
 
3.7.31.7 Maxima [F]

\[ \int \frac {a+b \arcsin (c x)}{x^3 \left (d+e x^2\right )} \, dx=\int { \frac {b \arcsin \left (c x\right ) + a}{{\left (e x^{2} + d\right )} x^{3}} \,d x } \]

input
integrate((a+b*arcsin(c*x))/x^3/(e*x^2+d),x, algorithm="maxima")
 
output
1/2*a*(e*log(e*x^2 + d)/d^2 - 2*e*log(x)/d^2 - 1/(d*x^2)) + b*integrate(ar 
ctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1))/(e*x^5 + d*x^3), x)
 
3.7.31.8 Giac [F(-1)]

Timed out. \[ \int \frac {a+b \arcsin (c x)}{x^3 \left (d+e x^2\right )} \, dx=\text {Timed out} \]

input
integrate((a+b*arcsin(c*x))/x^3/(e*x^2+d),x, algorithm="giac")
 
output
Timed out
 
3.7.31.9 Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \arcsin (c x)}{x^3 \left (d+e x^2\right )} \, dx=\int \frac {a+b\,\mathrm {asin}\left (c\,x\right )}{x^3\,\left (e\,x^2+d\right )} \,d x \]

input
int((a + b*asin(c*x))/(x^3*(d + e*x^2)),x)
 
output
int((a + b*asin(c*x))/(x^3*(d + e*x^2)), x)